
Quantum Cryptanalysis: Shor, Grover, and Beyond

Stephen P. Jordan and Yi-Kai Liu

1 Introduction

In 1994 Peter Shor discovered polynomial-time quantum algorithms for integer factorization
and discrete logarithms. If sufficiently large-scale quantum computers are built, Shor’s algo-
rithms will completely break the RSA cryptosystem and signature scheme, Diffie-Helman key
exchange, and elliptic curve cryptography such as ECDH and ECDSA. At present, there still
are not any sufficiently large-scale quantum computers to perform cryptanalysis. However,
there has been substantial progress since 1994 both on quantum computational hardware and
algorithms. In response to accelerating progress on quantum hardware in the last few years,
efforts have been intensifying to develop practical alternatives to the public key key crypto-
graphic methods currently in use. Such “post-quantum” cryptographic schemes base their
security on hard computational problems, such as finding short vectors in high-dimensional
lattices or solving systems of multivariate quadratic equations over finite fields, that are not
known to be susceptible to attack by quantum computers. However, since 1994, a small but
dedicated community of quantum algorithm researchers has continually discovered quantum
algorithms offering speedups for a widening variety of problems. Whether the various pro-
posed post-quantum cryptosystems are truly safe from quantum attack remains an area of
current research.

2 Quantum computation

Two of the most common misconceptions about quantum computers are that they can
achieve exponential speedup for generic problems through exponential parallelism and that
the only speedups achievable by quantum computers are for integer factorization using Shor’s
algorithm and searching using Grover’s algorithm. The truth is far more interesting than
either of these caricatures. In reality, to outperform classical algorithms, quantum algo-
rithms rely on subtle interference effects among amplitudes representing exponentially many
different computational paths. The quantum speedups discovered so far extend well beyond
factoring and searching, but they much are more rare and precious than is suggested by the
metaphor of exponential parallelism.

A key element of quantum mechanics, which underlies quantum computation, is the prin-
ciple of superposition. Each distinguishable state of a quantum system has a corresponding
amplitude, which is a complex number of magnitude at most one. Upon measurement, the

1

system will be found in a given state with probability given by the squared magnitude the
associated amplitude. The idea of superposition is often illustrated using Schrödinger’s fa-
mous thought experiment in which a cat is put into a state that simultaneously has equal
amplitude to be alive and dead. However, to observe non-classical behavior arising from
superposition requires very careful isolation from stray interactions with the environment.
Under ordinary circumstances, at the macroscopic level, noise washes out quantum effects
far too quickly for them to be noticeable.

In accordance with the superposition principle, the state of a quantum computer with
n quantum bits of memory (qubits) is described by a list of 2n amplitudes, one for each
possible length-n bit string. These exponentially complicated states give some hint as to
the origin of the power of quantum computers. A full description of the state of a quantum
computer with only 80 qubits would already be too large to store on all the hard drives ever
manufactured. However, this is not the whole story. To completely describe the state of an
n-bit classical probabilistic computer one would also need to write down 2n numbers, namely
the probabilities associated with each of the 2n bit strings. So, exponentially complicated
states are not a uniquely quantum phenomenon! The crucial difference is that quantum
amplitudes can be positive or negative1, and thus can interfere constructively or destructively
like waves, whereas probabilities are always nonnegative and simply add. Only by carefully
designing quantum algorithms to take advantage of interference effects is it possible to achieve
exponential speedup over classical computation.

Over the past 20 years, steady progress has been made in the quest to actually build
quantum computers. A key obstacle is that the superpositions and interference effects nec-
essary to achieve quantum computational speedup are extremely fragile and easily destroyed
by imprecise control signals and stray influences from the environment. However, in 1996
it was shown theoretically that, if error per operation in a quantum computer could be
brought below a fixed threshold, then it is possible to carry out arbitrarily long quantum
computations reliably through the use of error-correcting codes. Recently, individual opera-
tions on small collections of qubits have been demonstrated in multiple quantum computing
platforms, such as ion traps and superconducting circuits, that are nominally below this
threshold. To bring the overhead associated with error correction down to tolerable levels
for practical systems it will be necessary to decrease the error rates still further. Neverthe-
less, this achievement has been widely viewed as a significant milestone in the development
of quantum computers.

At the same time as universal quantum computers are being developed, other labs are
developing more specialized devices such as quantum simulators for mimicking materials that
are hard to simulate on conventional supercomputers, and quantum annealers for solving
discrete optimization problems. These specialized quantum computers have been scaled up
much further than universal digital quantum computers. In particular, D-wave’s quantum
current annealer has over 1000 qubits, whereas current prototypes of universal quantum
computers use only tens of qubits. However, quantum simulators and quantum annealers

1More generally, quantum amplitudes can have arbitrary complex phases. However, it turns out that real
positive and negative amplitudes suffice for universal quantum computation.

2

are single-purpose devices, unable to run, for example, Shor’s algorithm, and do not have
any known applications to cryptanalysis. The remainder of this article will focus only on
algorithms for universal digital quantum computers.

3 Quantum algorithms

In classical computing we are used to describing computations at different levels of abstrac-
tion. At the bottom level we have elementary logic operations such as AND, OR, and NOT
gates. At an intermediate level we talk of arithmetic operations, if statements, for loops,
and so on. At a high level we talk of commonly used subroutines, such as searching, sorting,
inverting matrices, and fast Fourier transforms. The same holds for quantum computation.
What follows is a brief tour of quantum algorithms from a high-level perspective, emphasizing
quantum-algorithmic primitives of relevance to cryptanalysis.

3.1 Reversible Computing

In the earliest days of quantum computation research the main question being asked was
not whether quantum effects could be used for computational advantage but rather whether
they posed a barrier to continued miniaturization of computers. In particular, the dynamics
of closed quantum systems are fully reversible, that is, information cannot be erased. Conse-
quently, logic gates such as the AND gate, which takes two bits of input and produces one bit
of output, cannot be directly implemented in a quantum-coherent way. However, pioneering
works by Lecerf, Bennett, Toffoli, and Fredkin in the 60s, 70s, and 80s, showed how universal
classical computing could be performed in a reversible way, such as by using universal sets of
logic gates that implement reversible maps from their input bits to their output bits. Conse-
quently, any classical subroutine can be recompiled into reversible logic gates and queried in
quantum superposition within a quantum algorithm. This recompilation incurs an efficiency
cost of only constant-factor overhead.

Many quantum algorithms are usefully phrased in terms of oracle (or “black-box”) prob-
lems. One is given access to some efficiently computable function, and one wishes to deduce
some property of it by making queries. Grover search and period finding, discussed in detail
below, are two examples of this. Reversible computing underlies these quantum algorithms in
that the oracles are ultimately classical subroutines that have been recompiled into reversible
gate sets so that they may be run on a quantum computer and queried on superpositions of
inputs.

3.2 Discrete Period finding

One of the most important high-level primitives in quantum algorithm design is period
finding. The period finding problem is to find the period of a periodic function f , given the
ability to evaluate f at arbitrary elements of its domain. That is, there is some s such that
f(x + s) = x for all x, and the goal is to find s. Access to the source code for f may make

3

this problem easier. For example, if one examines the code for f and sees that it simply
returns the residue of x modulo s, then it is trivial to read off that the period is s. However,
in many situations, the computation of f is sufficiently complicated that there may be no
better way to find the period than by treating f as a black-box to be queried at various x
until the period can be found. Such a black-box framework is frequently a useful simplifying
assumption in the analysis of quantum algorithms.

On a quantum computer, it is possible to make queries to a black box function in su-
perposition. For some problems, such as period finding, this ability is greatly advantageous.
For others, such as computing the overall parity of the set of outputs produced by f , quan-
tum superposition queries yield very little advantage. If the period s of f is exponentially
large then classically one requires exponentially many queries, on average, to find s. After
a number of queries small compared to

√
s, one will not encounter any pair x, y such that

f(x) = f(y) and consequently one will have learned nothing about the period. In contrast,
by making only polynomially many superposition queries, a quantum computer can learn the
period s, even if it is exponentially large. This is done by computing the quantum Fourier
transform — an analogue of the classical fast Fourier transform, which operates on quantum
superposition states. This discovery, made by Peter Shor in 1994, formed the heart of his
quantum algorithms for integer factorization and discrete logarithms.

Shor’s algorithms for factoring and discrete logarithms completely break the RSA cryp-
tosystem and signature scheme, and Diffie-Hellman key exchange. Furthermore, the quantum
algorithms for period finding can straightforwardly generalize to other domains. In the ex-
amples above, the inputs to x have been integers taken modulo N . However, if the inputs to
x are thought of as elements of some arbitrary Abelian group then the quantum algorithm
for period finding still applies with little modification. The period may be described by a
set of generators for a subgroup of the inputs which leave the value of f invariant. Quan-
tum algorithms for this “Abelian hidden subgroup problem” can in particular be applied
to the groups associated with elliptic curves, thereby breaking Elliptic Curve Diffie-Hellman
(ECDH) key exchange and the Elliptic Curve Digital Signature Algorithm (ECDSA).

Encouraged by these successes, many researchers have attempted to devise quantum
algorithms for “hidden subgroup problems” (HSP) over various non-Abelian groups, such
as the symmetric group, the dihedral group, and the general linear group over a finite field.
These HSP’s are connected to a number of other well-known problems that seem to be hard
for classical computers, namely the graph isomorphism problem, the shortest vector problem
in lattice-based cryptography, and certain problems underlying the security of multivariate
cryptosystems. To date there has not been a breakthrough in solving any of these famous
problems on a quantum computer. But there have been a number of interesting results, such
as Kuperberg’s algorithm, which solves the dihedral HSP in subexponential time [1].

3.3 Searching

Like period finding, searching can be cast in a black box query framework. For example, given
a function f : D → {0, 1} on some finite setD, find an x ∈ D such that f(x) = 1. The hardest
instances of such a problem are when f(x) = 1 only for a unique x. Classically solving this

4

requires |D| queries in the worst case and |D|/2 queries on average. Lov Grover discovered in
1996 that quantum computers can solve this problem using O(

√
|D|) superposition queries.

Earlier lower bounds showed that this is optimal, that is, fewer than order
√
|D| quantum

queries will not suffice.
Although stated abstractly, this primitive is easily adapted to many real-world problems.

For example, suppose g : D → R is a one-way function, and you wish to invert it, that
is, calculate g−1(r) for some r ∈ R. From g one can easily construct f : D → {0, 1}
which outputs 1 if g(x) = r and 0 otherwise. Such a function can be compiled into a
reversible circuit that can be run on a quantum computer and queried in superposition.
In this way Grover’s algorithm can perform brute-force inversion of one-way functions in
O(
√
|D|) time, a quadratic improvement over classical brute-force. This has led to a rule of

thumb for post-quantum symmetric-key cryptography, which advocates doubling key sizes
(and thereby squaring the size of D) to maintain a given security level against attack by
Grover search. However, this rule of thumb likely overestimates the advantage that can be
gained from running Grover search in practice, since brute-force attacks are often run in
parallel on large clusters of computers, and the Grover speedup is less significant in this
setting. Also, more detailed analysis has yielded more precise guidance on choice of key sizes
in response to the speedups afforded by replacing search-like subroutines in state of the art
classical cryptanalysis algorithms with Grover search [2, 3].

A quantum algorithm based on Grover search can also speed up collision finding, that is,
finding x, y ∈ D such that f(x) = f(y). Classically, this requires, in the worst case O(

√
|D|)

queries, by the birthday paradox, whereas on a quantum computer, it can be achieved using
O(|D|1/3) queries. However, this quantum algorithm has large memory requirements and is
probably not of practical relevance for finding collisions in hash functions [4].

3.4 Hidden Shift

Hidden shift problems are another class of idealized oracle-query problems which have real-
world implications. In a hidden shift problem, we are given oracle access to some function f ,
and we know that f(x) = g(x+s) for some fixed known function g and unknown shift s. The
goal is to find s by making queries to f . For the hardest instances of hidden shift, quantum
computers can achieve only a quadratic speedup. For example, suppose the domain of f
and g is the integers modulo N and let g(0) = 1 and g(x) = 0 for all x 6= 1. Then, finding
s is exactly the Grover search problem, for which quantum computers can achieve only a
quadratic speedup over classical computers

However, for more structured instances of hidden shift, quantum algorithms have been
discovered yielding exponential speedup. In particular, the Legendre symbol, for any prime
p, is defined as follows.

(
x

p

)
=

0 if x ≡ 0 mod p
1 if x ≡ m2 mod p for some m
−1 otherwise

5

The shifted Legendre symbol problem is, given oracle access to f(x) =
(

x+s
p

)
for known p,

to find s. As shown in [5], quantum computers can solve this in time that scales only poly-
nomially in log p, whereas it is believed that no classical algorithms can achieve this. In fact,
the presumed hardness of this problem was used as the basis for a proposed cryptographic
random number generator [6]. At its core, the quantum algorithm of [5] relies on the same
quantum Fourier transform that powers Shor’s algorithm.

Another problem that has beyond-Grover quantum speedup is the hidden shift problem
for injective functions. In this case, the number of quantum queries that are information-
theoretically sufficient to extract the shift is only poly(logN). However, no quantum algo-
rithm has been found to solve hidden shift in poly(logN) total runtime (which includes not
just the queries but also pre- and post-processing). The quantum algorithm with the small-
est total runtime for solving the injective hidden shift is Kuperberg’s sieve, which runs in
2O(
√
N) time [1]. Interestingly, this quantum algorithm is based on fundamentally different al-

gorithmic techniques than the other known quantum algorithms achieving superpolynomial
speedups for algebraic and number-theoretic problems, which are all essentially based on
Fourier transforms and period finding. Subsequent work improved upon Kuperberg’s sieve
by giving a quantum algorithm for the injective hidden shift problem that runs in 2O(

√
N)

time and also uses only poly(logN) qubits of quantum memory.
In [7] a subexponential-time quantum algorithm for finding isogenies between ordinary

(i.e. non-supersingular) elliptic curves was constructed through a nontrivial reduction to the
injective hidden shift problem. Roughly speaking, such isogenies are maps from one elliptic
curve to another which preserve the associated group structure. This quantum algorithm can
be used to attack certain public-key cryptosystems that base their security on the assumed
difficulty of finding isogenies of ordinary elliptic curves. However, this quantum algorithm
is not applicable to attacking the cryptosystems based on the difficulty of finding isogenies
between supersingular elliptic curves.

3.5 Quantum Walks

A very different kind of computational speedup can be obtained using an algorithmic tech-
nique known as a quantum walk. Quantum walks are a technique for exploring a graph
or network. They are defined by analogy with classical random walks, in different ways —
there are several variants. As an illustration, we describe the continuous-time quantum walk,
which is particularly simple.

In a classical random walk, a particle moves around a graph, hopping from one vertex
to another, where each step is chosen at random, i.e., if the particle currently resides at
vertex v, it moves to one of the neigboring vertices of v, chosen at random. This defines a
stochastic process, with a Markov transition matrix A. The continuous-time quantum walk
is defined as the quantum dynamics that is generated by the Schrodinger equation, with the
Hamiltonian given by A.

Quantum walks can be used to explore graphs that are exponentially large, provided that
the list of neighbors of any given vertex can be computed efficiently on a quantum computer.

6

start finish

Figure 1: For glued trees, as illustrated above, the quantum walk algorithm of [8] finds the
finish in time polynomial in the depth of the trees, whereas the fastest possible classical
algorithm requires time polynomial in the number of vertices. Thus quantum walks achieve
an exponential speedup for this problem.

Of course, classical random walks can also be used to explore large graphs. But the behavior
of a quantum walk is strikingly different. For instance, a classical random walk converges
to the stationary or equilibrium distribution, which is often spread over the whole graph. A
quantum walk, on the other hand, is a reversible process, so it never converges. Instead, the
quantum particle “hits” different parts of the graph, and then returns. Which parts of the
graph get “hit” depends in part on the patterns of constructive and destructive interference
that are created by the complex-valued wavefunction of the quantum particle.

This unusual behavior is advantageous for solving certain problems. A famous example is
the problem of finding a path through two “glued trees” [8]. Here, the graph consists of two
full binary trees, whose leaves are connected by a random, alternating cycle. The problem is
to find a path from the root of one tree to the root of the other tree.2 This problem can be
solved in polynomial time using a continuous-time quantum walk, but it requires exponential
time using any classical algorithm. Intuitively, the reason is that any classical algorithm gets
lost in the middle section of the graph, because there are exponentially many vertices, and
exponentially few paths out of that section. The quantum walk, meanwhile, will propagate
straight across the graph, due to constructive interference at each “level” of the tree.

The above algorithm is an intriguing example of an exponential quantum speedup that
has nothing to do with the quantum Fourier transform, the hidden subgroup problem, or
any kind of algebraic structure at all. This suggests that there may be other approaches to
designing quantum algorithms for problems that are hard for classical computers.

2This is formulated as an oracle problem: one is given the name of the vertex at the root of the first tree,
and an oracle that computes the neighbors of any vertex in this graph, and one is asked to discover the name
of the vertex at the root of the other tree.

7

4 Some Current Frontiers in Quantum Algorithms

Quantum algorithms research is a highly technical subject in which major new algorithmic
techniques are developed only once or twice per decade. Some of the most recent such de-
velopments are a quantum algorithm for the principal ideal problem, which has applications
to lattice-based cryptography, a new method for solving discrete optimization problems on
quantum computers called the Quantum Approximate Optimization Algorithm (QAOA),
and a method for solving solving exponentially large systems of linear equations under cer-
tain conditions called the Harrow-Hassidim-Lloyd (HHL) algorithm. It is not yet clear what,
if any, implications these primitives may have for quantum cryptanalysis.

4.1 Quantum Algorithms for Lattice Problems

There have been many attempts to devise quantum algorithms for finding short vectors in
high-dimensional lattices. Early on, researchers noted a number of tantalizing connections
between the mathematical methods used in lattice-based cryptography, and those used in
quantum algorithms. In particular, many of the security proofs for lattice-based cryptosys-
tems make use random samples from certain periodic distributions over Rn, as well as the
Fourier transforms of these periodic distributions. Could there be a way of using the quantum
Fourier transform to prepare the quantum superposition states corresponding to these dis-
tributions? These superposition states, sometimes called “quantum samples,” contain more
information than classical random samples, and could be used to solve lattice problems.

In fact, this line of thinking did not lead to quantum algorithms for lattice problems.
Instead, this idea was used by Oded Regev to prove one of the strongest security guarantees
for lattice-based cryptography [9]. Specifically, Regev showed that breaking a certain public
key encryption scheme is at least as hard as solving an intractable lattice problem, on
a quantum computer. And so in this case, a technique originally intended for quantum
cryptanalysis was ultimately used to provide evidence that a cryptosystem is actually secure.

More recently, however, there has been more progress on the side of quantum crypt-
analysis. Specifically, there has been progress in developing quantum algorithms for solving
problems involving lattices that have algebraic structure. (Lattices with algebraic structure
are often used in cryptography, as they have more compact descriptions than general lattices.
This makes the resulting cryptosystems more efficient.)

Recently, researchers have discovered efficient quantum algorithms for finding short gen-
erators of certain principal ideals in cyclotomic rings [10, 11, 12]. These quantum algorithms
demonstrate an exponential speedup over the fastest classical algorithms, as well as a po-
tential security weakness of certain algebraically-structured lattices as compared to general
lattices. In particular, these quantum algorithms break the Buchman-Williams key exchange
system, as well as lattice-based cryptosystems that use principal ideal lattices with unusu-
ally short generators, such as SOLILOQUY [10]. Other lattice-based cryptosystems based
on ideal lattices, such as NTRUEncrypt and ring-LWE schemes, are not broken by any

8

presently-known quantum algorithm3.
The underlying technique used in these quantum algorithms is period-finding, but over

a continuous (rather than discrete) domain. For functions on continuous domains, such as
the real numbers, the problem of finding (approximate) periodicities becomes more subtle.
Nevertheless, quantum algorithms have been discovered which achieve exponential speedup
over classical algorithms for this task. This in turn leads to polynomial-time quantum
algorithms for various number theoretic problems, such as solving Pell’s equation, finding
generators of principal ideals, and computing the class groups and unit groups of algebraic
number fields, in time polynomial in the degree of the number field [14].

4.2 Quantum Approximate Optimization Algorithm

QAOA was proposed in 2014 as a quantum algorithm for finding approximate solutions to
discrete optimization problems such as MAX3SAT [15]. Such problems have wide-ranging
practical applications. Furthermore, QAOA may be implementable on near-term quantum
computing hardware that is not yet a universal error-corrected quantum computer. (QAOA
shares these features with adiabatic quantum computation and quantum annealing to which
it is closely related.) As a consequence, QAOA has attracted substantial interest from
researchers since its introduction.

The difficulty of solving discrete optimization problems such as MAX3SAT varies greatly
between instances. Consequently, proving meaningful bounds on the runtime of quantum
or classical algorithms for these problems is extremely difficult. Furthermore, finding fully
optimal solutions to these problems is NP-complete, and most computer scientists expect
this task to have exponential complexity for worst case instances on both quantum and clas-
sical computers. However, in 2014 it was proven that QAOA can in polynomial-time find
approximate solutions to a discrete optimization problem called Max E3LIN2, at an approx-
imation scale that no polynomial-time classical algorithm had achieved. Prompted by this
discovery, research intensified on classical approximation algorithms for Max E3LIN2, and
in 2015 a classical algorithm provably outperforming QAOA on this problem was obtained.
Nevertheless, the performance of QAOA on various discrete optimization problems remains
a topic of intense research interest, both in terms of provable worst-case runtime bounds,
and as a heuristic quantum algorithm.

4.3 Solving Linear Systems

Algorithms for solving linear algebra problems are among the most widely used primitives
in all of scientific computing. Thus the 2009 announcement by Harrow, Hassidim, and Lloyd
(HHL) of a quantum algorithm for solving exponentially large systems of linear equations in
polynomial time was met with great excitement [16]. Specifically, given an N ×N matrix A

and an N -dimensional vector ~b, over the real or complex numbers, the HHL algorithm can

3See [13] for a very nice journalistic description of recent developments in the quantum cryptanalysis of
lattice-based cryptosystems.

9

under certain circumstances construct in time poly(logN) a quantum state proportional to

~x, the solution to A~x = ~b. Subsequently, measurements on this quantum state can yield
partial information about the solution ~x. Clearly, simply reading all the entries of an N ×N
matrix takes time of order N2 and no algorithm (quantum or classical) that uses N2 time to
read its input can possibly have total running time of only poly(logN). Instead, the HHL
algorithm is of interest in the case that A is given implicitly by a subroutine which, when
queried with a row index j ∈ {1, 2, . . . , N}, outputs a list of its nonzero matrix elements
and their locations. Under the condition that A is highly sparse, i.e. each row has only
poly(logN) nonzero entries, and has condition number at most poly(logN), it is possible for
the HHL algorithm to construct a quantum state proportional to the solution ~x in polynomial
time even when N is exponentially large.

The problem solved by the HHL algorithm is significantly different from the problem
solved by most conventional classical linear algebra packages; the input matrix is given by
an oracle rather than explicitly stored, and the output is in the form of a quantum state.
Furthermore, exponential speedup is only achievable if the condition number (i.e. ratio
of largest to smallest eigenvalue) of the input matrix scales as a power of the logarithm
of the dimension of the matrix. In short, this quantum algorithm is highly powerful but
its applicability has limitations of an unfamiliar type. At present the boundaries of what
can and cannot be achieved by quantum algorithms based on the HHL primitive are still
being mapped out. Potential applications explored so far range from machine learning to
calculating electromagnetic scattering crossections.

5 Conclusion

Shor’s polynomial-time quantum algorithms for discrete logarithms and integer factorization
imply that the currently widely-deployed public-key cryptosystems will be completely inse-
cure in an era of large-scale universal quantum computers. A number of promising public-key
cryptosystems hoped to be resistant to quantum attack have been proposed. These include
lattice-based, code-based, and multivariate systems, as well has hash-based signatures. Many
of the classical attacks on these schemes, as well as on symmetric-key cryptography, can be
sped up slightly through judicious use of Grover’s search algorithm. Such quantum attacks
do not preclude use of these schemes, although they may dictate increased key sizes. How-
ever, there have also been a significant number of quantum algorithms discovered subsequent
to Shor’s 1994 discovery of a quantum factoring algorithm and Grover’s 1996 discovery of a
quantum search algorithm. Some of these recent breakthroughs in quantum algorithms have
resulted in complete breaks (e.g. polynomial-time key recovery attacks) on cryptosystems
that were previously expected to be secure against quantum computers. A clear lesson is
that continued attention to quantum algorithms research will be crucial to the development
of the next generation of public-key cryptosystems.

10

References

[1] Greg Kuperberg. A subexponential-time quantum algorithm for the dihedral hidden
subgroup problem. SIAM Journal on Computing, 35(1):170–188, 2005. arXiv:quant-
ph/0302112.

[2] T. Laarhoven, M. Mosca, and J. van de Pol. Solving the shortest vector problem in
lattices faster using quantum search. In Proceedings of PQCrypto13, pages 83–101, 2016.

[3] Scott Fluhrer. Quantum cryptanalysis of NTRU. IACR Cryptology ePrint Archive,
2015:676, 2015. https://eprint.iacr.org/2015/676.

[4] Daniel J. Bernstein. Cost analysis of hash collisions: Will quantum computers make
SHARCS obsolete? In SHARCS’09 Proceedings of the 4th Workshop on Special-purpose
Hardware for Attacking Cryptographic Systems, pages 105–116, 2009. https://cr.yp.
to/hash/collisioncost-20090517.pdf.

[5] Wim van Dam, Sean Hallgren, and Lawrence Ip. Quantum algorithms for some hidden
shift problems. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 489–498, 2003. arXiv:quant-ph/0211140.

[6] Ivan B. Damg̊ard. On the randomness of the Legendre and Jacobi sequences. Lecture
Notes in Computer Science, 403:163–172, 1988.

[7] Andrew M. Childs, David Jao, and Vladimir Soukharev. Constructing elliptic curve
isogenies in quantum subexponential time. Journal of Mathematical Cryptology, 8(1):1–
29, 2014. arXiv:1012.4019.

[8] Andrew M. Childs, Richard Cleve, Enrico Deotto, Edward Farhi, Sam Gutmann, and
Daniel A. Spielman. Exponential algorithmic speedup by a quantum walk. In Proceed-
ings of the 35th Annual ACM Symposium on Theory of Computing, June 9-11, 2003,
San Diego, CA, USA, pages 59–68, 2003.

[9] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore,
MD, USA, May 22-24, 2005, pages 84–93, 2005.

[10] Peter Campbell, Michael Groves, and Dan Shepherd. SOLILOQUY: a cautionary
tale. http://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_and_

Attacks/S07Groves_Annex.pdf, 2014.

[11] Ronald Cramer, Léo Ducas, Chris Peikert, and Oded Regev. Recovering short generators
of principal ideals in cyclotomic rings. IACR Cryptology ePrint Archive, 2016:313, 2016.
https://eprint.iacr.org/2016/313.

11

[12] Jean-François Biasse and Fang Song. On the quantum attacks against schemes rely-
ing on the hardness of finding a short generator of an ideal in Q(ζpn). Technical re-
port, University of Waterloo, 2015. http://cacr.uwaterloo.ca/techreports/2015/

cacr2015-12.pdf.

[13] Natalie Wolchover. A tricky path to quantum-safe encryption. Quanta Magazine, 2015.
https://www.quantamagazine.org/20150908-quantum-safe-encryption/.

[14] Kirsten Eisenträger, Sean Hallgren, Alexei Kitaev, and Fang Song. A quantum algorithm
for computing the unit group of an arbitrary degree number field. In Proceedings of the
ACM Symposium on Theory of Computing (STOC), pages 293–302, 2014.

[15] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate opti-
mization algorithm. arXiv:1411.4028, 2014.

[16] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for
solving linear systems of equations. Physical Review Letters, 15(103):150502, 2009.
arXiv:0811.3171.

12

